US 20180039905A1

a9y United States

12y Patent Application Publication o) Pub. No.: US 2018/0039905 A1

Anghel et al. 43) Pub. Date: Feb. 8, 2018
(54) LARGE SCALE DISTRIBUTED TRAINING (52) US. CL
OF DATA ANALYTICS MODELS CPC .o GO6N 99/005 (2013.01)
(71) Applicant: International Business Machines 57) . . ABSTR{&CT . .
Corporation, Armonk, NY (US) E.mb.odlments train (.1ata analytics models by fitting that is
distributed computationally and from a data storage point of
(72) Inventors: Andreea S. Anghel, Adliswil (CH); view to produce an equivalent model to that achieved by
Bogdan Prisacari jAdliswil (CH) ’ sequential fitting. For example, a method may include
’ performing a first pass on an untrained model at a first node,
repeatedly transmitting the model to a next node and training
the data analytics model at the next node until the data
(21) - Appl. No.: 15/227,101 analytics mod}e,:tl has been trained by at least a portion of the
plurality of processing nodes. There may be a plurality of
. models that need to be fitted on the dataset and that may be
(22) Filed: Aug. 3, 2016 independent or may result from varying and choosing dif-
ferent combinations of model structure, model meta-param-
eters that are not learned through training, and training
Publication Classification algorithm parameters. Embodiments may provide the capa-
bility for training multiple models simultaneously by per-
(51) Imt. CL forming the single-model fitting process on different suc-
GOG6N 99/00 (2006.01) cessions of nodes.

102-1
NODE 1

PROCESSOR

1L

MEMORY

102-N-1
NODE N-1

PROCESSOR

1L

MEMORY

100/

102-2
NODE 2

PROCESSOR

1L

MEMORY

102-N
NODE N

PROCESSOR

1L

MEMORY

Patent Application Publication

102-1
NODE 1

PROCESSOR

1L

MEMORY

102-N-1
NODE N-1

PROCESSOR

1L

MEMORY

100/

Feb. 8,2018 Sheet 1 of 3

Fig. 1

102-2
NODE 2

PROCESSOR

1L

MEMORY

102-N
NODE N

PROCESSOR

1L

MEMORY

US 2018/0039905 A1

Patent Application Publication Feb. 8, 2018 Sheet 2 of 3 US 2018/0039905 A1

Fig. 2

202
DIVIDE DATASET AMONG NODES

204
PROCESS MODEL AT FIRST NODE,
SEND TO NEXT NODE

A 4

A 4

206
PROCESS MODEL AT NODE, SEND TO
NEXT NODE

208
PROCESS MODEL AT FINAL NODE IN
USE

210
ANOTHER PASS?

212
OUTPUT MODEL

200 /

Patent Application Publication Feb. 8, 2018 Sheet 3 of 3

Fig. 3

300
COMPUTING DEVICE

US 2018/0039905 A1

304 302A 302N 306
INPUT/ CPU (e e®e| CPU | INETWORK
OUTPUT ADAPTER

310
NETWORK

308
MEMORY

312
MODEL PROCESSING ROUTINES

314
COMMUNICATION ROUTINES

316
MODEL DATA

318
DATASET PORTION

320
OPERATING SYSTEM

US 2018/0039905 Al

LARGE SCALE DISTRIBUTED TRAINING
OF DATA ANALYTICS MODELS

BACKGROUND

[0001] The present invention relates to techniques for
training of data analytics models by fitting that is distributed
computationally and from a data storage point of view and
that is able to produce an equivalent model to that achieved
by sequential fitting.

[0002] Extracting knowledge from data is now more than
ever essential for business development. Recently, it has
become evident that data analytics models/frameworks will
need to be able to reach unprecedented scale to be able to
effectively handle the Big Data explosion. The challenges
are two-fold: 1) such models need to scale computationally
such that knowledge can be extracted in a practical amount
of time, and ii) such models need to scale data-wise, as they
need to be able to process quantities of data that would not
fit on a single machine or even in the main memory of an
entire distributed system. Exploiting parallelism is thus a
necessity.

[0003] The training of a machine learning model is typi-
cally done by finding a set of model parameters that globally
minimizes some error function. Parallel approaches typi-
cally work on subsets of the data concurrently to maximize
performance. The drawback is that in working separately on
subset, each subset may not include enough information so
that the global optimum can be computed. While a sequen-
tial approach is typically much slower, it also has the
potential to achieve better accuracy. Nonetheless, the pre-
vailing approach is the parallel approach, that is computing
partial models (one for each subset into which the global
dataset is partitioned) and then merging them in the end
(typically non-optimally). This may work reasonably well
for certain problems (for example, when the model param-
eter space is convex) and not so well for others (for example,
K-Means clustering, where the model parameter space has
multiple local optima).

[0004] In addition, often the competitive advantage of a
data analytics solution is not gained by completely reinvent-
ing algorithms/models as much as by intelligent construc-
tion and selection of the feature space and the exploration of
the model meta-parameter space. For a given dataset and
model, a huge number of combinations of dataset views
(feature construction and selection) and model versions
(model meta-parameter space) must to be evaluated. This
means that the problem is no longer the original single
computationally- and I0-hard problem, but rather thousands
or more instances of equally hard such problems.

[0005] Accordingly, a need arises for techniques by which
such large-scale data analytics models may be developed to
provide improved performance and reduced cost.

SUMMARY

[0006] Embodiments of the present invention may provide
the capability for training of data analytics models by fitting
that is distributed computationally and from a data storage
point of view and that is able to produce an equivalent model
to that achieved by sequential fitting. Given a multi-node
distributed computing system data parallelism and
in-memory computation may be achieved by distributing the
dataset onto the available nodes. Likewise, sequential-
equivalence may be achieved by transmitting from node to

Feb. §, 2018

node not the data, but the intermediate models, and per-
forming computation only on local data (bringing thus
computation to the data, not the other way around). Further,
computational parallelism may be achieved by training
multiple models and considering multiple dataset views.

[0007] In an embodiment of the present invention, a
computer-implemented method for training of data analytics
models may comprise dividing a dataset among a plurality
of processing nodes, each processing node comprising at
least one processor, memory, and communications circuitry,
the memory of each processing node storing a different
portion of the dataset, performing a first training pass on an
untrained data analytics model by receiving at a first node
the untrained data analytics model, training the untrained
data analytics model by integrating the portion of the dataset
stored on the first node into the data analytics model,
repeating transmitting the data analytics model to a next
node and training the data analytics model at the next node
by integrating the portion of the dataset stored on the next
node into the data analytics model until the data analytics
model has been trained by at least a portion of the plurality
of processing nodes, and outputting the trained data analyt-
ics model.

[0008] In an embodiment of the present invention, the
method may further comprise performing at least one addi-
tional training pass on the data analytics model. The output
trained data analytics model may have similar accuracy to a
data analytics model trained by training the data analytics
model with the dataset sequentially. The method may further
comprise training a plurality of data analytics models, the
plurality of data analytics models resulting from varying and
choosing different combinations of model structure, model
meta-parameters that are not learned through training, and
training algorithm parameters. The method may further
comprise training the plurality of data analytics models
simultaneously using the plurality of processing nodes, each
data analytics model trained on the plurality of processing
nodes using a different succession of processing nodes than
the successions of processing nodes with which other data
analytics models are trained. The method may further com-
prise training a plurality of data analytics models, wherein at
least some of the plurality of data analytics models are
independent of each other and training the plurality of data
analytics models simultaneously using the plurality of pro-
cessing nodes, each data analytics model trained on the
plurality of processing nodes using a different succession of
processing nodes than the successions of processing nodes
with which other data analytics models are trained.

[0009] In an embodiment of the present invention, a
computer program product for training of data analytics
models may comprise a non-transitory computer readable
storage having program instructions embodied therewith,
the program instructions executable by a computer, to cause
the computer to perform a method comprising dividing a
dataset among a plurality of processing nodes, each pro-
cessing node comprising at least one processor, memory, and
communications circuitry, the memory of each processing
node storing a different portion of the dataset, performing a
first training pass on an untrained data analytics model by
receiving at a first node the untrained data analytics model,
training the untrained data analytics model by integrating the
portion of the dataset stored on the first node into the data
analytics model, repeating transmitting the data analytics
model to a next node and training the data analytics model

US 2018/0039905 Al

at the next node by integrating the portion of the dataset
stored on the next node into the data analytics model until
the data analytics model has been trained by at least a
portion of the plurality of processing nodes, and outputting
the trained data analytics model.

[0010] In an embodiment of the present invention, a
system for training of data analytics models, the system may
comprise a processor, memory accessible by the processor,
and computer program instructions stored in the memory
and executable by the processor to perform dividing a
dataset among a plurality of processing nodes, each pro-
cessing node comprising at least one processor, memory, and
communications circuitry, the memory of each processing
node storing a different portion of the dataset, performing a
first training pass on an untrained data analytics model by
receiving at a first node the untrained data analytics model,
training the untrained data analytics model by integrating the
portion of the dataset stored on the first node into the data
analytics model, repeating transmitting the data analytics
model to a next node and training the data analytics model
at the next node by integrating the portion of the dataset
stored on the next node into the data analytics model until
the data analytics model has been trained by at least a
portion of the plurality of processing nodes, and outputting
the trained data analytics model.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The details of the present invention, both as to its
structure and operation, can best be understood by referring
to the accompanying drawings, in which like reference
numbers and designations refer to like elements.

[0012] FIG. 1 is an exemplary block diagram of a distrib-
uted computing system.

[0013] FIG. 2 is an exemplary flow diagram of a process
for distributed data analytics model fitting.

[0014] FIG. 3 is an exemplary block diagram of a com-
puter system in which processes involved in the embodi-
ments described herein may be implemented.

DETAILED DESCRIPTION

[0015] Embodiments of the present invention may provide
the capability for training of data analytics models by fitting
that is distributed computationally and from a data storage
point of view and that is able to produce an equivalent model
to that achieved by sequential fitting. Given a multi-node
distributed computing system data parallelism and
in-memory computation may be achieved by distributing the
dataset onto the available nodes. Likewise, sequential-
equivalence may be achieved by transmitting from node to
node not the data, but the intermediate models, and per-
forming computation only on local data (bringing thus
computation to the data, not the other way around). Further,
computational parallelism may be achieved by training
multiple models and considering multiple dataset views.

[0016] An exemplary distributed computing system is
shown in FIG. 1. Distributed computing systems are typi-
cally groups of networked computers, which have the same
goal for their work, such as each processing a portion of the
same computing task. In this example, there are a plurality
of computing nodes, such as node 1 102-1, node 2 102-2,
through node N-1 102N-1 and node N 102N. Each node
102-1-102-N may be a complete computer system including
one or more processors, memory, and communication cir-

Feb. §, 2018

cuitry. Information may be exchanged among nodes by
passing messages between the processors using the commu-
nication circuitry. Typically, each node is communicatively
connected to one or more other nodes. However, in larger
distributed systems, each node is typically not directly
communicatively connected to every other node. The
arrangement shown in FIG. 1 is merely an example. The
present invention contemplates any number, arrangement, or
communicative connection of nodes in the distributed sys-
tem.

[0017] A typical data analytics problem may involve a
dataset of, for example, m data points, and a data analytics
model that is to be fitted to the dataset. Typically, the model
itself is more concise, in terms of the amount of information
needed to specify it, than the dataset itself. For very large
datasets, which are typically much larger than the available
memory in each node, the fitting process involves process-
ing only a portion, known as a batch, of the dataset at a time,
updating the model, then moving on to the next batch.

[0018] Hypothetically, if the entire dataset would fit on a
single node, and the time necessary to perform the fitting on
that single node was not an issue, the globally optimal
model, M, ., could be generated on that single node, as all
the information (data) is available on that node. With a
batched or online fitting, this could be achieved by integrat-
ing data points into the model successively, in some order.

[0019] An exemplary flow diagram of a process 200 for
distributed data analytics model fitting is shown in FIG. 2.
It is best viewed in conjunction with FIG. 1. With this
approach, a model equivalent to M,,,,, may be generated,
despite the data being distributed, while using only a rela-
tively small amount of inter-node communication, and with
no movement of the original dataset from node to node.
Process 200 begins with 202, in which the dataset may be
divided among nodes. For example, if there are N nodes and
the dataset includes m datapoints, then each node 102-1 to
102-N would receive m/N datapoints.

[0020] At 204, an initial or “empty” model may be sent to
a first node, such as node 102-1. Node 102-1 may then
integrate the data points in its portion of the dataset into the
model in a batched fashion, then send the processed model
to the next (second) node, such as node 2 102-2. At 206, the
next node, such as node 2 102-2, may then integrate the data
points in its portion of the dataset into the model, then send
the processed model to the next node. The processing at 206
may be repeated for each successive node until, at 208, the
processed model is sent to the final node in use. For
example, the final node in use may be the final available
node, such as node N 102-N, in which case all available
nodes have been used. Alternatively, the final node in use
may not be the final available node. For example, node N-1
102-N-1 may be the last node to be used to perform
processing. In this case, fewer than all available nodes have
been used. The last node used may then integrate the data
points in its portion of the dataset into the model. At this
point, one pass of the model through the dataset has been
completed. At 210, it may be determined whether another
pass is necessary. If another pass is necessary, then the
model may be sent back to node 1 at 204, and the processing
may be repeated as many times as necessary. If another pass
is not necessary, then at 212, the processed model may be
output. The model ultimately generated by process 200,
M isripureas MaY be considered to be equivalent to M, ;.

US 2018/0039905 Al

Thus, M;.,,ip.00 May have similar accuracy to a data ana-
Iytics model trained by training the data analytics model
with the dataset sequentially.

[0021] It is to be noted that the distribution of portions of
the dataset across the nodes, and the order in which the
model is then processed by the nodes, has an effect on the
processed model, M, ..., that is generated. Given this,
an My, ., ipureqs that is equivalent to M, ,, may or may not be
generated efficiently. However, more processed models may
be communicated among nodes, so that many orders in
which the model is processed by the nodes may be repli-
cated. Furthermore, to achieve an M, ; equivalent model,
using the exact same order is not apriori necessary as the
order that lead to M, ; is not apriori better than any other
order of processing.

[0022] The method presented so far enables data parallel-
ism, in that it produces an equally accurate model as in the
sequential case while not requiring all the data to be present
on the same node. However, it does not improve the speed
of the model fitting (no computational parallelism). How-
ever, in the context we have described, which is typical of
exploratory machine learning, where multiple model and
data configurations need to be evaluated, we can achieve
computational parallelism from evaluating these different
models in parallel. For example, there may be a plurality of
models to be fitted on the dataset. This plurality of models
may be independent or may result from varying and choos-
ing different combinations of model structure, model meta-
parameters that are not learned through training, and training
algorithm parameters. Embodiments may provide the capa-
bility for training multiple models of said plurality of models
simultaneously by performing the previously described
single-model fitting process (see para. 0020 above) on
different successions of nodes. For example, assume that
there are Nodes 1, 2, and 3 and three models X, Y, and Z. In
the first training step the untrained model X may be sent to
node 1, the untrained model Y may be sent to node 2 and the
untrained model Z may be sent to node 3. Once the first
training step of integrating the dataset is done, the (partially)
trained model X may be sent to node 2, the (partially) trained
model Y may be sent to node 3 and the (partially) trained
model Z may be sent to node 1 and so on.

[0023] An exemplary block diagram of a computing
device 300, in which processes involved in the embodiments
described herein may be implemented, such as those pro-
cesses performed by nodes 1-N 102-1-102-N of FIG. 1, is
shown in FIG. 3. Computing device 300 is typically a
programmed general-purpose computer system, such as an
embedded processor, system on a chip, personal computer,
workstation, server system, and minicomputer or mainframe
computer. Likewise, computing device 300 may be imple-
mented in a wrist-worn, or other personal or mobile device,
and may include sensor circuitry as well as display circuitry
to display object identification information. Computing
device 300 may include one or more processors (CPUs)
302A-302N, input/output circuitry 304, network adapter
306, and memory 308. CPUs 302A-302N execute program
instructions in order to carry out the functions of the present
invention. Typically, CPUs 302A-302N are one or more
microprocessors, such as an INTEL PENTIUM® processor.
FIG. 3 illustrates an embodiment in which computing device
300 is implemented as a single multi-processor computer
system, in which multiple processors 302A-302N share
system resources, such as memory 308, input/output cir-

Feb. §, 2018

cuitry 304, and network adapter 306. However, the present
invention also contemplates embodiments in which comput-
ing device 300 is implemented as a plurality of networked
computer systems, which may be single-processor computer
systems, multi-processor computer systems, or a mix
thereof.

[0024] Input/output circuitry 304 provides the capability
to input data to, or output data from, computing device 300.
For example, input/output circuitry may include input
devices, such as keyboards, mice, touchpads, trackballs,
scanners, analog to digital converters, etc., output devices,
such as video adapters, monitors, printers, etc., and input/
output devices, such as, modems, etc. Network adapter 306
interfaces device 300 with a network 310. Network 310 may
be any public or proprietary LAN or WAN, including, but
not limited to the Internet.

[0025] Memory 308 stores program instructions that are
executed by, and data that are used and processed by, CPU
302 to perform the functions of computing device 300.
Memory 308 may include, for example, electronic memory
devices, such as random-access memory (RAM), read-only
memory (ROM), programmable read-only memory
(PROM), electrically erasable programmable read-only
memory (EEPROM), flash memory, etc., and electro-me-
chanical memory, such as magnetic disk drives, tape drives,
optical disk drives, etc., which may use an integrated drive
electronics (IDE) interface, or a variation or enhancement
thereof, such as enhanced IDE (FIDE) or ultra-direct
memory access (UDMA), or a small computer system
interface (SCSI) based interface, or a variation or enhance-
ment thereof, such as fast-SCSI, wide-SCSI, fast and wide-
SCSI, etc., or Serial Advanced Technology Attachment
(SATA), or a variation or enhancement thereof, or a fiber
channel-arbitrated loop (FC-AL) interface.

[0026] The contents of memory 308 may vary depending
upon the function that computing device 300 is programmed
to perform. In the example shown in FIG. 3, exemplary
memory contents are shown representing routines and data
for embodiments of the processes described above, such as
those processes performed by nodes 1-N 102-1-102-N of
FIG. 1. However, one of skill in the art would recognize that
these routines, along with the memory contents related to
those routines, may not be included on one system or device,
but rather may be distributed among a plurality of systems
or devices, based on well-known engineering consider-
ations. The present invention contemplates any and all such
arrangements.

[0027] In the example shown in FIG. 3, memory 308 may
include model processing routines 312, communication rou-
tines 314, model data 316, dataset portion 318, and operating
system 320. For example, model processing routines 312
may include routines that integrate the data points in a
node’s portion of the dataset 318 into the model data 316.
Communication routines 314 may include routines to
receive dataset data and processed model data and to send
processed model data. Model data 316 may include data
representing the model being processed, and into which a
node’s portion of the dataset 318 may be integrated. Dataset
portion 318 may include a node’s portion of the dataset
being used to generate the current model. Operating system
320 provides overall system functionality.

[0028] As shown in FIG. 3, the present invention contem-
plates implementation on a system or systems that provide
multi-processor, multi-tasking, multi-process, and/or multi-

US 2018/0039905 Al

thread computing, as well as implementation on systems that
provide only single processor, single thread computing.
Multi-processor computing involves performing computing
using more than one processor. Multi-tasking computing
involves performing computing using more than one oper-
ating system task. A task is an operating system concept that
refers to the combination of a program being executed and
bookkeeping information used by the operating system.
Whenever a program is executed, the operating system
creates a new task for it. The task is like an envelope for the
program in that it identifies the program with a task number
and attaches other bookkeeping information to it. Many
operating systems, including Linux, UNIX®, OS/2®, and
Windows®, are capable of running many tasks at the same
time and are called multitasking operating systems. Multi-
tasking is the ability of an operating system to execute more
than one executable at the same time. Each executable is
running in its own address space, meaning that the
executables have no way to share any of their memory. This
has advantages, because it is impossible for any program to
damage the execution of any of the other programs running
on the system. However, the programs have no way to
exchange any information except through the operating
system (or by reading files stored on the file system).
Multi-process computing is similar to multi-tasking com-
puting, as the terms task and process are often used inter-
changeably, although some operating systems make a dis-
tinction between the two.

[0029] The present invention may be a system, a method,
and/or a computer program product at any possible technical
detail level of integration. The computer program product
may include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention. The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device.

[0030] The computer readable storage medium may be,
for example, but is not limited to, an electronic storage
device, a magnetic storage device, an optical storage device,
an electromagnetic storage device, a semiconductor storage
device, or any suitable combination of the foregoing. A
non-exhaustive list of more specific examples of the com-
puter readable storage medium includes the following: a
portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures in a groove having instructions recorded thereon,
and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be
construed as being transitory signals per se, such as radio
waves or other freely propagating electromagnetic waves,
electromagnetic waves propagating through a waveguide or
other transmission media (e.g., light pulses passing through
a fiber-optic cable), or electrical signals transmitted through
a wire.

[0031] Computer readable program instructions described
herein can be downloaded to respective computing/process-
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net-

Feb. §, 2018

work, for example, the Internet, a local area network, a wide
area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, switches,
gateway computers, and/or edge servers. A network adapter
card or network interface in each computing/processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing/processing
device.

[0032] Computer readable program instructions for carry-
ing out operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written in any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention.

[0033] Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer
program products according to embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

[0034] These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including

US 2018/0039905 Al

instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

[0035] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0036] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments
of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted in the Figures. For example, two blocks shown in
succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions.

[0037] Although specific embodiments of the present
invention have been described, it will be understood by
those of skill in the art that there are other embodiments that
are equivalent to the described embodiments. Accordingly, it
is to be understood that the invention is not to be limited by
the specific illustrated embodiments, but only by the scope
of the appended claims.

What is claimed is:

1. A computer-implemented method for training of data
analytics models comprising:

dividing a dataset among a plurality of processing nodes,
each processing node comprising at least one processor,
memory, and communications circuitry, the memory of
each processing node storing a different portion of the
dataset;

performing a first training pass on an untrained data
analytics model by:

receiving at a first node the untrained data analytics
model,;

training the untrained data analytics model by integrating
the portion of the dataset stored on the first node into
the data analytics model;

repeating transmitting the data analytics model to a next
node and training the data analytics model at the next
node by integrating the portion of the dataset stored on
the next node into the data analytics model until the
data analytics model has been trained by at least a
portion of the plurality of processing nodes; and

outputting the trained data analytics model.

Feb. §, 2018

2. The method of claim 1, wherein the method further
comprises:

performing at least one additional training pass on the

data analytics model.

3. The method of claim 1, wherein the output trained data
analytics model has similar accuracy to a data analytics
model trained by training the data analytics model with the
dataset sequentially.

4. The method of claim 1, further comprising:

training a plurality of data analytics models, the plurality

of data analytics models resulting from varying and
choosing different combinations of model structure,
model meta-parameters that are not learned through
training, and training algorithm parameters.

5. The method of claim 4, further comprising:

training the plurality of data analytics models simultane-

ously using the plurality of processing nodes, each data
analytics model trained on the plurality of processing
nodes using a different succession of processing nodes
than the successions of processing nodes with which
other data analytics models are trained.

6. The method of claim 1, further comprising:

training a plurality of data analytics models, wherein at

least some of the plurality of data analytics models are
independent of each other; and

training the plurality of data analytics models simultane-

ously using the plurality of processing nodes, each data
analytics model trained on the plurality of processing
nodes using a different succession of processing nodes
than the successions of processing nodes with which
other data analytics models are trained.

7. A computer program product for training of data
analytics models, the computer program product comprising
a non-transitory computer readable storage having program
instructions embodied therewith, the program instructions
executable by a computer, to cause the computer to perform
a method comprising:

dividing a dataset among a plurality of processing nodes,

each processing node comprising at least one processor,
memory, and communications circuitry, the memory of
each processing node storing a different portion of the
dataset;

performing a first training pass on an untrained data

analytics model by:

receiving at a first node the untrained data analytics

model,;

training the untrained data analytics model by integrating

the portion of the dataset stored on the first node into
the data analytics model;

repeating transmitting the data analytics model to a next

node and training the data analytics model at the next
node by integrating the portion of the dataset stored on
the next node into the data analytics model until the
data analytics model has been trained by at least a
portion of the plurality of processing nodes; and out-
putting the trained data analytics model.

8. The computer program product of claim 7, further
comprising program instructions for:

performing at least one additional training pass on the

data analytics model.

9. The computer program product of claim 7, wherein the
output trained data analytics model has similar accuracy to
a data analytics model trained by training the data analytics
model with the dataset sequentially.

US 2018/0039905 Al

10. The computer program product of claim 7, further
comprising program instructions for:

training a plurality of data analytics model, the plurality

of data analytics models resulting from varying and
choosing different combinations of model structure,
model meta-parameters that are not learned through
training, and training algorithm parameters.

11. The computer program product of claim 10, further
comprising program instructions for:

training the plurality of data analytics models simultane-

ously using the plurality of processing nodes, each data
analytics model trained on the plurality of processing
nodes using a different succession of processing nodes
than the successions of processing nodes with which
other data analytics models are trained.

12. The computer program product of claim 7, further
comprising:

training a plurality of data analytics models, wherein at

least some of the plurality of data analytics models are
independent of each other; and

training the plurality of data analytics models simultane-

ously using the plurality of processing nodes, each data
analytics model trained on the plurality of processing
nodes using a different succession of processing nodes
than the successions of processing nodes with which
other data analytics models are trained.

13. A system for training of data analytics models, the
system comprising a processor, memory accessible by the
processor, and computer program instructions stored in the
memory and executable by the processor to perform:

dividing a dataset among a plurality of processing nodes,

each processing node comprising at least one processor,
memory, and communications circuitry, the memory of
each processing node storing a different portion of the
dataset;

performing a first training pass on an untrained data

analytics model by:

receiving at a first node the untrained data analytics

model,;

training the untrained data analytics model by integrating

the portion of the dataset stored on the first node into
the data analytics model;

Feb. §, 2018

repeating transmitting the data analytics model to a next
node and training the data analytics model at the next
node by integrating the portion of the dataset stored on
the next node into the data analytics model until the
data analytics model has been trained by at least a
portion of the plurality of processing nodes; and out-
putting the trained data analytics model.

14. The system of claim 13, further comprising computer
program instructions for:

performing at least one additional training pass on the

data analytics model.

15. The system of claim 13, wherein the output trained
data analytics model has similar accuracy to a data analytics
model trained by training the data analytics model with the
dataset sequentially.

16. The system of claim 13, further comprising computer
program instructions for:

training a plurality of data analytics models, the plurality

of data analytics models resulting from varying and
choosing different combinations of model structure,
model meta-parameters that are not learned through
training, and training algorithm parameters.

17. The system of claim 16, further comprising computer
program instructions for:

training the plurality of data analytics models simultane-

ously using the plurality of processing nodes, each data
analytics model trained on the plurality of processing
nodes using a different succession of processing nodes
than the successions of processing nodes with which
other data analytics models are trained.

18. The system of claim 13, further comprising:

training a plurality of data analytics models, wherein at

least some of the plurality of data analytics models are
independent of each other; and

training the plurality of data analytics models simultane-

ously using the plurality of processing nodes, each data
analytics model trained on the plurality of processing
nodes using a different succession of processing nodes
than the successions of processing nodes with which
other data analytics models are trained.

#* #* #* #* #*

